European Scientists Pedigree

Image

I have been being confused by mathematics’ formula which are not so familiar with me before. Reading a mathematics’  book is not like reading  such kind of comics of Naruto or novel of Sidney Sheldon. I decided to sort it and copied paste into my blog therefore i can always remember although  it is not often used regularly. Might be it would be useful for someone outside there, who are studying and dealing with Engineerings’ area.

Gottfried Wilhelm Leibniz http://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz

Infinitesimal calculus
Monads
Best of all possible worlds
Leibniz formula for π
Leibniz harmonic triangle
Leibniz formula for determinants
Leibniz integral rule
Principle of sufficient reason
Diagrammatic reasoning
Notation for differentiation
Proof of Fermat’s little theorem
Kinetic energy
Entscheidungsproblem
AST

Jacob Bernoulli  http://en.wikipedia.org/wiki/Jacob_Bernoulli

Bernoulli differential equation
Bernoulli numbers
(Bernoulli’s formula
Bernoulli polynomials
Bernoulli map)
Bernoulli trial
(Bernoulli process
Bernoulli scheme
Bernoulli operator
Hidden Bernoulli model
Bernoulli sampling
Bernoulli distribution
Bernoulli random variable
Bernoulli’s Golden Theorem)
Bernoulli’s inequality
Lemniscate of Bernoulli

Johann Bernoulli http://en.wikipedia.org/wiki/Johann_Bernoulli

Development of infinitesimal calculus
Catenary solution
Bernoulli’s rule
Bernoulli’s identity

Leonhard Euler http://en.wikipedia.org/wiki/Leonhard_Euler

 http://en.wikipedia.org/wiki/List_of_topics_named_after_Leonhard_Euler#Euler.E2.80.94conjectures

Euler angles defining a rotation in space.

Euler approximation – (see Euler method)

Euler brick

Euler characteristic in algebraic topology and topological graph theory, and the corresponding Euler’s formula

Euler circle

Eulerian circuit – (see Eulerian path)

Euler class

Euler’s constant – (see Euler–Mascheroni constant) (not to be confused with Euler’s number)

Euler cycle – (see Eulerian path)

Euler’s criterion – quadratic residues modulo primes

Euler derivative (as opposed to Lagrangian derivative)

Euler diagram – likely more widely (though incorrectly) known as Venn diagram (which has more restrictions)

Euler’s disk – a circular disk that spins, without slipping, on a surface

Eulerian graph – (see Eulerian path)

The Euler integrals of the first and second kind, namely the beta function and gamma function.

Euler’s line – relation between triangle centers

Euler–Mascheroni constant or Euler’s constant γ ≈ 0.577216

Euler’s number, e, the base of the natural logarithm.

Euler operator – set of functions to create polygon meshes

Euler parameters – (see Euler–Rodrigues parameters)

Eulerian path, a path through a graph that takes each edge once.

Euler polynomials

Euler pseudoprime

Euler–Rodrigues parameters – concerns Lie groups and quaternions

Euler’s rule – finding amicable numbers

Euler spline – composed of classical Euler polynomial arcs (cred. to Schoenberg, 1973 – PDF)

Euler squares, usually called Graeco-Latin squares.

Euler substitution

Euler summation

Euler system, a collection of cohomology classes.

Euler’s three-body problem

[edit]Euler—conjectures

Euler’s conjecture (Waring’s problem)

Euler’s sum of powers conjecture

(Also see Euler’s conjecture.)

[edit]Euler—equations

Euler’s equation – usually refers to Euler’s equations (rigid body dynamics)Euler’s formulaEuler’s homogeneous function theorem, or Euler’s identity

Euler equations (fluid dynamics) in fluid dynamics.

Euler’s equations (rigid body dynamics), concerning the rotations of a rigid body.

Euler–Bernoulli beam equation, concerning the elasticity of structural beams.

Euler–Cauchy equation (or Euler equation), a second-order linear differential equation

Euler–Lagrange equation (in regard to minimization problems in calculus of variations)

Euler–Lotka equation (mathematical demography)

Euler–Poisson–Darboux equation

Euler’s pump and turbine equation

Euler–Tricomi equation – concerns transonic flow

Euler transform used to accelerate the convergence of an alternating series and is also frequently applied to the hypergeometric series

[edit]Euler—formulas

Euler’s formula e ix = cos x + i sin x in complex analysis.

Euler’s formula for planar graphs or polyhedra: v − e + f = 2

Euler’s formula for the critical load of a column:

Euler’s continued fraction formula

Euler product formula – for the Riemann zeta function.

Euler–Maclaurin formula (Euler’s summation formula) – relation between integrals and sums

Euler–Rodrigues formulas – concerns Euler–Rodrigues parameters and 3D rotation matrices

[edit]Euler—functions

The Euler function, a modular form that is a prototypical q-series.

Euler’s homogeneous function theorem

Euler’s totient function (or Euler phi (φ) function) in number theory, counting the number of coprime integers less than an integer.

Euler hypergeometric integral

[edit]Euler—identities

Euler’s identity e  + 1 = 0.

Euler’s four-square identity, which shows that the product of two sums of four squares can itself be expressed as the sum of four squares.

Euler’s identity may also refer to the pentagonal number theorem.

[edit]Euler—numbers

Euler’s numbere ≈ 2.71828, the base of the natural logarithm, also known as Napier’s constant.

Euler’s idoneal numbers

Euler numbers are an integer sequence.

Eulerian numbers are another integer sequence.

Euler number (physics), the cavitation number in fluid dynamics.

Euler number (topology) – now, Euler characteristic

Lucky numbers of Euler

Euler–Mascheroni constant

Eulerian integers are the numbers of form a+bω where ω is a complex cube root of 1.

[edit]Euler—theorems

Euler’s homogeneous function theorem, a theorem about homogeneous polynomials.

Euler’s infinite tetration theorem

Euler’s rotation theorem

Euler’s theorem (differential geometry) on the existence of the principal curvatures of a surface and orthogonality of the associated principal directions.

Euler’s theorem in geometry, relating the circumcircle and incircle of a triangle.

Euclid–Euler theorem

Euler–Fermat theorem, that aφ(m) ≡ 1 (mod m) whenever a is coprime to m, and φ is the totient function.

Euler’s theorem equating the number of partitions with odd parts and the number of partitions with distinct parts. See Glaisher’s theorem.

Euler’s adding-up theorem in economics

[edit]Euler—laws

Euler’s first law, the linear momentum of a body is equal to the product of the mass of the body and the velocity of its center of mass.

Euler’s second law, the sum of the external moments about a point is equal to the rate of change of angular momentum about that point.

[edit]Other things named after Euler

2002 Euler (a minor planet)

AMS Euler typeface

Euler (software)

Euler acceleration or force

Euler Book Prize

Euler Medal, a prize for research in combinatorics

Euler programming language

Euler–Fokker genus

Project Euler

Joseph Louis Lagrange http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange

See list
Analytical mechanics
Celestial mechanics
Mathematical analysis
Number theory

Joseph Fourier http://en.wikipedia.org/wiki/Joseph_Fourier

Fourier series
Fourier transform
Fourier’s law of conduction

Johann Peter Gustav Lejeune Dirichlet http://en.wikipedia.org/wiki/Dirichlet

See full list

Claude Louis Navier http://en.wikipedia.org/wiki/Claude-Louis_Navier

Navier–Stokes equations

Muelheim ad Ruhr, 10.07.2013

vanAdam

2 thoughts on “European Scientists Pedigree

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s